If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-36=9
We move all terms to the left:
3x^2-36-(9)=0
We add all the numbers together, and all the variables
3x^2-45=0
a = 3; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·3·(-45)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*3}=\frac{0-6\sqrt{15}}{6} =-\frac{6\sqrt{15}}{6} =-\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*3}=\frac{0+6\sqrt{15}}{6} =\frac{6\sqrt{15}}{6} =\sqrt{15} $
| 5x=-5x+20 | | 2t+22=3t-2 | | Z=17y-4 | | 6x+3(x+9)=135 | | v/8+6.3=-6.5 | | d+-490=378 | | 6x+3(5x-13)=66 | | g/2-11=-8 | | -14.6=v/7-3.4 | | 6x+2(7x+8)=196 | | 14.6=v/7-3.4 | | 3x+22=-x+2 | | 6x+7(4x-11)=195 | | -3x-12=-5x+2 | | 3/2y-4/3=5/4y | | (3x+7)+(x+1)=90 | | 88+10x=138 | | 2p^2=-10p-11 | | 2x+6(2x-11)=46 | | -8x+2=-3x+7 | | 3x+6(5x-12)=93 | | 17x+15=2x+45 | | 5(x+2+4x=6x+1 | | 20+2x=21+2x | | 4 | | 2.5d+9.75=1+4.25d+33.5d | | 7-3x=-2-4x | | 6x+6(3x-13)=186 | | z3+2=−49 | | 78000+1.4x=38000+1.9x | | 7x−6=7(x−6) | | 2x-16+x=180 |